Counterexamples to Strassen’s direct sum conjecture

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterexamples to the uniformity conjecture

The Exact Geometric Computing approach requires a zero test for numbers which are built up using standard operations starting with the natural numbers. The uniformity conjecture, part of an attempt to solve this problem, postulates a simple linear relationship between the syntactic length of expressions built up from the natural numbers using field operations, radicals and exponentials and loga...

متن کامل

Counterexamples to Kalai's conjecture C

1 The First Counterexample Let ρ be a quantum state on the space (C) of n qudits (d-dimensional quantum systems). Denote by ρS the reduced state of ρ onto some subset S of the qudits. We partition S further into two nonempty subsets of qudits A and A := S\A (thus S must contain at least two qudits). Denote by Sep(A) the convex set of quantum states which are bipartite separable on S across the ...

متن کامل

New Counterexamples to Knaster’s Conjecture

Given a continuous map f : Sn−1 → Rm and n − m + 1 points p1, . . . , pn−m+1 ∈ Sn−1, does there exist a rotation % ∈ SO(n) such that f(%(p1)) = . . . = f(%(pn−m+1))? We give a negative answer to this question for m = 1 if n ∈ {61, 63, 65} or n ≥ 67 and for m = 2 if n ≥ 5.

متن کامل

Counterexamples to the List Square Coloring Conjecture

A graph G is called chromatic-choosable if χl(G) = χ(G). It is an interesting problem to find graphs that are chromatic-choosable. There are several famous conjectures that some classes of graphs are chromatic-choosable including the List Coloring Conjecture, which states that any line graph is chromatic-choosable. The square G of a graph G is the graph defined on V (G) such that two vertices u...

متن کامل

Nonarithmetic superrigid groups: Counterexamples to Platonov’s conjecture

Margulis showed that “most” arithmetic groups are superrigid. Platonov conjectured, conversely, that finitely generated linear groups which are superrigid must be of “arithmetic type.” We construct counterexamples to Platonov’s Conjecture. 1. Platonov’s conjecture that rigid linear groups are aritmetic (1.1) Representation rigid groups. Let Γ be a finitely generated group. By a representation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 2019

ISSN: 0001-5962,1871-2509

DOI: 10.4310/acta.2019.v222.n2.a3